Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần xuân quyến

chứng minh rằng

\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

em nhỏ 5 tuổi
25 tháng 5 2019 lúc 14:44

BĐT\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2+6\left(ab+bc+cd+da+bd+ca\right)\ge8\left(ab+bc+cd+da+bd+ca\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2-2\left(ab+bc+cd+da+bd+ca\right)\ge0\) (*)

Ta có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd\)

\(d^2+a^2\ge2da;b^2+d^2\ge2bd;c^2+a^2\ge2ca\)

Cộng theo vế các BĐT trên suy ra \(3a^2+3b^2+3c^2+3d^2\ge2\left(ab+bc+cd+da+bd+ca\right)\)

Do vậy BĐT (*) đúng hay ta có đpcm.

P/s: EM còn khá dốt BĐT,mong được các anh chị chỉ bảo cho ạ!

Thắng Nguyễn
7 tháng 3 2018 lúc 18:36

Cần cù bù thông minh ^^

\(BDT\Leftrightarrow\frac{1}{9}\left(-3a+b+c+d\right)^2+\frac{2}{9}\left(2b-c-d\right)^2+\frac{2}{3}\left(c-d\right)^2\ge0\)

Hihi mình phân tích hơi nham nhở thông cảm nha :(

em nhỏ 5 tuổi
18 tháng 6 2019 lúc 14:15

Thử cách này xem sao:

BĐT \(\Leftrightarrow\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(c-d\right)^2}{3}\ge0\) (đúng)

Vậy ta có đpcm.


Các câu hỏi tương tự
Hỏi Làm Gì
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
binhbinhthd
Xem chi tiết
Fire Sky
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Luong
Xem chi tiết
Phúc
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Trịnh Hải Yến
Xem chi tiết