đặt biểu thức là A
=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)=1-\frac{1}{3^{100}}\)
\(2A=1-\frac{1}{3^{100}}=>A=\frac{1-\frac{1}{3^{100}}}{2}\)
dễ thấy 1-1/3^100 <1
=>A<1/2(đpcm)
nhớ ****