Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
___Kiều My___

Chứng minh rằng:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}<2\)

Cô Hoàng Huyền
21 tháng 6 2016 lúc 14:43

Ta thấy mỗi hạng tử của tổng đều có dạng:  \(\frac{\left(n-1\right)n-1}{n!}=\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}=\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)

Như vậy VT = \(\frac{1}{0!}-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

Bùi Nguyễn Yến Ngọc
22 tháng 6 2016 lúc 10:51

LA 0 DO CON NGU DU

công chúa mặt trăng
22 tháng 6 2016 lúc 14:40

bạn đừng nói thế chứ

GIDDY GIRL
22 tháng 6 2016 lúc 15:27

Ta có:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

nguyen van dung
23 tháng 6 2016 lúc 8:47

dau '' ! '' la j z moi nguoi

VRCT_gnk_Thùy Linh
25 tháng 6 2016 lúc 11:30

"!" tức là giai thừa,cái nay học năm lớp 6 đó.


Các câu hỏi tương tự
Nhung
Xem chi tiết
nguyễn hải bình
Xem chi tiết
thị đông tô
Xem chi tiết
Phí Quỳnh Anh
Xem chi tiết
satoshi-gekkouga
Xem chi tiết
hoangthuthuha
Xem chi tiết
Kaori Miyazono
Xem chi tiết
zoombie hahaha
Xem chi tiết
hoang linh dung
Xem chi tiết