\(C=x^2-6z+4y^2+8y+z^2-2x+15\)
=>\(C=\left(x^2-2x+1\right)+\left(z^2-6z+9\right)+\left(4y^2+8y+4\right)+1\) (là những hằng đẳng thức bạn ạ)
=>\(C=\left(x-1\right)^2+\left(z-3\right)^2+\left(2y+2\right)^2+1\)
Vì \(\left(x-1\right)^2\) \(\ge\) 0 (Với mọi x)
\(\left(z-3\right)^2\ge0\) (Với mọi x)
\(\left(2y+2\right)^2\ge0\) (Với mọi x)
=>\(\left(x-1\right)^2+\left(z-3\right)^2+\left(2y+2\right)^2+1\ge1\) (Với mọi x)
Vậy C>0 (Với mọi x) (đpcm)
Mình chắc chắn 100% đó **** mình na !!!