a) Chứng minh rằng nếu \(gcd\left(a,b\right)=1\) thì \(gcd\left(a^m-b^m,a^n-b^n\right)=a^{gcd\left(m,n\right)}-b^{gcd\left(m,n\right)}\), với mọi m,n nguyên dương.
b) (Định lí cơ bản của Số học) Chứng minh rằng một số nguyên dương luôn có thể phân tích thành các thừa số nguyên tố:
\(n=p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}\)
chứng minh rằng, với mọi số nguyên m,n ta có :\(A=mn\left(m^2-n^2\right)\left(m^2+n^2\right)⋮5\)
Giúp mk với cần gấp nha
Chứng minh rằng \(A=n\left(n+1\right).\left(2n+1\right)⋮6\)với mọi n nguyên
Chứng minh: \(1\cdot2\cdot3+2\cdot3\cdot4+...+n\left(n+1\right)\left(n+2\right)=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\) với mọi \(n\inℕ\)
1. cho biểu thức :
D = \(\frac{\left(2!\right)^2}{1^2}+\frac{\left(2!\right)^2}{3^2}+\frac{\left(2!\right)^2}{5^2}+...+\frac{\left(2!\right)^2}{2015^2}\)
so sánh D với 6
2. cho các số nguyên dương a,b,c,d thỏa mãn : ab = cd
Chứng minh rằng : A = an + bn + cn + dn là hợp số
với mọi n \(\in\)N
chứng minh rằng :
\(A=n\times\left(n^2+1\right)\times\left(n^2+4\right)\)chia hết cho 10 với mọi n thuộc N
1. Chứng minh 2n+5 và 4n+9 là hai số nguyên tố cùng nhau với mọi số tự nhiên n\
2. Tìm số tự nhiên n biết \(\left(3n+5\right)⋮\left(2n+1\right)\)
3 . Cho a+7b chia hết cho 11. Chứng minh rằng 8a+b chia hết cho 11
1) Cho x,y thuộc \(ℕ\) thỏa mãn \(\left(3x+5y\right)\left(x+4y\right)⋮7\). Chứng tỏ rằng \(\left(3x+5y\right)\left(x+4y\right)⋮49\).
2) Chứng minh rằng với mọi số nguyên n ta có \(n^3-n⋮6\)
giải nhanh hộ mik nhé
Với n là số tự nhiên khác 0; Chứng minh \(\dfrac{1\cdot3\cdot5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(n+n\right)}=\dfrac{1}{2^n}\)
Help me please!