Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Giang Bùi

Chứng minh rằng1/22+1/23+1/24+...+1/2n <1

Kudo Shinichi
25 tháng 12 2014 lúc 22:12
1\20 + 1\40 = 60\20.40 > 60\30^2 (do 30^2 > 30^2-10^2)
tương tự ta có:
1\21 + 1\39 > 60\30^2
1\22 + 1\38 > 60\30^2
........
1\29 + 1\31 > 60\30^2
=> S > 10.60\30^2 + 1\30 -1\20
=> S > 20\30 + 1\30 -1\20 > 7\12

lại có:
1\21+..+1\25 < 5\21
1\26+..+1\30 < 5\26
....
1\36+..+1\40 < 5\36
=> S < 5\21 + 5\26 + 5\31 + 5\36
=> S < 5.(1\21 + 1\24 + 1\30 + 1\36)
=> S < 5\3.(1\7 + 1\8 + 1\10 + 1\12)
do 1\7 + 1\10 +1\12 < 3\8
=> S < 5\3.(4\8) = 5\6
(cm S > 7\12 gần như adụng cosi ở phổ thông... 1\a + 1\(n-a) >= 2\(a.(n-a)
.......... .
bạn trang L mắc sai lầm nghiêm trọng....
1\21 +..+1\40 < 1\21 +..+1\21 = 20\21 chứ không phải lớn hơn...
bời vì 1\(21+a) < 1\21 với mọi a>0
tương tự S >1\2 chứ không phải < 1\2
để ktra lại rất đơn giản... theo bạn Trang L ta có:
7\12 < 20\21 < S < 1\2 < 5\6
điều này hoàn toàn vô lý với nền toán học thế giới hiện nay
nói cách khác.. theo Trang L ta có:
.. S > 20\21 mà 20\21 > 5\6 => S >5\6 vậy kết luận S < 5\6 kiểu gì đây....?
........ .....
(nhìn bạn Trang L giải tôi cũng tý bị nhầm... nhưng chú ý hơn mới thấy đc bạn ấy bị nhầm BDT, a> b => 1\a < 1\b chư không phải 1\a>1\b)

Các câu hỏi tương tự
Trì Ngâm
Xem chi tiết
Ha Thai
Xem chi tiết
Quế Phan Hà An
Xem chi tiết
Lê thị Dung
Xem chi tiết
Nguyễn Ngọc Minh Anh
Xem chi tiết
Đỗ Cao Minh Thiên
Xem chi tiết
Midori takemine
Xem chi tiết
Dũng Phan viết
Xem chi tiết
Trần Nguyễn Xuân Phát
Xem chi tiết
nguyen ngoc phuong anh
Xem chi tiết