Chứng minh rằng:
\(\frac{5x^3+5x}{x^4-1}=\frac{5x}{x^3-1}\)
Cho a>0, b>0 và a+b=1. Chứng minh rằng:
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
Chứng minh rằng với mọi số tự nhiên n\(\ge\)3
B=\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}< \frac{1}{12}\)
Chứng minh rằng
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{ab}\)
Cho các số thực \(a,b,c>1\)
Chứng minh rằng:\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a-b}+\frac{4}{b-c}+\frac{4}{c-a}\)
Cho A+B=1 chứng minh rằng \(^{3A^2+B^2\ge}\)\(\frac{3}{4}\)
Cho các số thực dương a, b, c có tổng bằng 1. Chứng minh rằng
\(\frac{a^3}{a+bc}+\frac{b^3}{b+ca}+\frac{c^3}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c>0.Chứng minh rằng
\(\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\ge\frac{a^3+b^3+c^3}{2}\)
Giúp mik trong tối nay nhé.mik cảm ơn trc. mai là hết hạn!
Bài 4: Chứng minh rằng mỗi biểu thức sau không phụ thuộc vào giá trị của biểu thức:
A=2x3+(x+1)3-3x(x-2)(x+2)-3(x2+5x-9)
B= x(x-4x)+x(2-x)(x+2)+4(2x2-5x+4)
C=(x-2y)(x2+2xy+4x2)-(x3-8y3+10
Bài5 :Thực hiện Phép tính:
d) xy2-3x3y2-2x(xy-3xy2)
f) (x-y)(2x+y)-2x2+y2+3xy