Chứng minh rằng với mọi số x,y ta có
x4+y4≥ x3y+xy3
Chừng minh rằng với mọi x,y:
a) \(x^2+\frac{y^2}{4}\ge xy\)
b)\(x^2+y^2+1\ge xy+x+y\)
c)\(x^4+y^4\ge xy\)
Cho x > 0 , y > 0 và x + y < 1 . Chứng minh rằng
\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\) \(\ge\) 4
Chứng minh:\(\frac{1}{1+x}+\frac{1}{1+y}\)≥\(\frac{2}{1+\sqrt{xy}}\) với mọi x, y > 0 thỏa mãn xy≥1
Cho hai số dương x,y thỏa mãn: x+y=1
Chứng mình rằng: \(P=6\left(x^3+y^3\right)+8\left(x^4+y^4\right)+\frac{5}{xy}\ge\frac{45}{2}\)
Cho x\(\ge\)3; y\(\ge2\); z\(\ge\)1. Chứng minh rằng:
\(\dfrac{xy\sqrt{x-1}+zx\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
chứng minh rằng với mọi x, y >0: \(\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
với x,y là hai số thực tùy ý, chứng minh rằng ta luôn có : \(x^{4^{ }}+y^4>=\frac{1}{2}\left(x^3y+xy^3\right)+x^2y^2\)