Dễ dàng chứng minh được
+) \(x^3+y^3\ge xy\left(x+y\right)=xy\)
+) \(x^4+y^4\ge xy\left(x^2+y^2\right)\ge xy\cdot\frac{\left(x+y\right)^2}{2}=\frac{xy}{2}\)
Khi đó \(P\ge6xy+8\cdot\frac{xy}{2}+\frac{5}{xy}=10xy+\frac{5}{xy}\)
\(=10xy+\frac{5}{8xy}+\frac{35}{8xy}\ge2\sqrt{\frac{10xy\cdot5}{8xy}}+\frac{35}{8\cdot\frac{\left(x+y\right)^2}{4}}=2\sqrt{\frac{50}{8}}+\frac{35}{8\cdot\frac{1}{4}}=\frac{45}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)