\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)
\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)
Chúng minh rằng với mọi số nguyên n thì: 2n^3-3n^2+n chia hết cho 6
Chứng minh rằng . 2n^3+3n^2+n chia hết cho 6 với mọi số nguyên n .
Chứng minh rằng
a) Biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
b) Biểu thức ( 2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi giá trị của m , n
làm ơn giúp mình với
Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
chứng minh rằng : n^2(n+1) + 2n(n+1) luôn chia hết cho 6 với mọi số nguyên
chứng minh rằng (3n+7)^2 -(2n+3)^2 chia hết cho 5 với mọi số nguyên n
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
Chứng minh rằng: n 2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.