Lời giải:
\(a(a+1)(a+2)(a+4)(a+5)(a+6)+36=[a(a+4)(a+5)][(a+1)(a+2)(a+6)]+36\)
\(=(a^3+9a^2+20a)(a^3+9a^2+20a+12)+36\)
\(=(a^3+9a^2+20a)^2+12(a^3+9a^2+20a)+36\)
\(=(a^3+9a^2+20a+6)^2\)
\(\Rightarrow \sqrt{a(a+1)(a+2)(a+4)(a+5)+36}=|a^3+9a^2+20a+6|\) có giá trị nguyên với mọi $a$ nguyên (đpcm)