Cho a, b,c >0 thỏa mãn \(a+b+c+2\sqrt{abc}=1\). Tính:
\(A=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-a\right)\left(1-c\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}+2017\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
\(Q=\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
a ) \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}+\sqrt{\frac{b^2}{c^2+\left(a+b\right)^2}}+\sqrt{\frac{c^2}{a^2+\left(b+c\right)^2}}\le\frac{3}{\sqrt{5}}\)
với a,b,c là các số thực dương
b ) cho ba số thực dương a,b,c thỏa mãn abc=1. tìm GTNN của biểu thức
\(P=\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Cho a, b , c dương thỏa mãn a + b + c = abc. Tìm Max
\(S=\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ca\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a, b là các số thực thoả mãn điều kiện:
\(\left(a+\sqrt{1+b^2}\right)\left(b+\sqrt{1+a^2}\right)=1\)
Tính giá trị của biểu thức: \(S=\left(a^3+b^3\right)\left(a^7b-5a^2b^4+21ab^5+73\right)+320\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a ,b ,c là các số thực dương thỏa mãn a+b+c+\(\sqrt[]{2abc}\)=2 CMR
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-a\right)\left(2-c\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
câu 1 :
Cho 3 số x,y,z thỏa mãn 0<x,y,z≤1 và x+y+z=2
Tìm GTNN của \(A=\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
câu 2 :
Tìm giá trị lớn nhất của A
Với a,b,c , d là các số dương và \(a+b+c+d\le1\)
\(A=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
a\(\sqrt{\left(1-b^2\right)\left(1-c^2\right)}\)+b\(\sqrt{\left(1-a^2\right)\left(1-c^2\right)}\)+c\(\sqrt{\left(1-b^2\right)\left(1-a^2\right)}\)-abc