Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TH

Chứng minh rằng với mọi n thuộc N thì n5 và n lun có chữ số tận cùng giống nhau

Le Thi Khanh Huyen
5 tháng 10 2016 lúc 19:41

Coi chữ số tận cùng của n là h

Với n lẻ :

\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)

Tương tự với n chẵn :

\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)

Vậy ...

ngonhuminh
8 tháng 2 2017 lúc 13:19

Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:

\(A=n^5-n\)

 A chia hết cho 5 với mọi n thuộc N (*)

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)

(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm

p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa

alibaba nguyễn
8 tháng 2 2017 lúc 17:41

Ta có:

n5 - n = n(n4 - 1)

= n(n2 - 1)(n2 - 4 + 5)

= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)

= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)

Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)

Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n - 1)n(n + 1) chia hết cho 10 (2)

Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.

Vậy n5 và n luôn có chữ số tận cùng giống nhau.


Các câu hỏi tương tự
Đinh Lan Hương
Xem chi tiết
Jin Tiyeon
Xem chi tiết
Nguyễn Văn Nhật
Xem chi tiết
Lê Công Thành
Xem chi tiết
Nguyễn Tất Anh Quân
Xem chi tiết
Nguyễn Hà
Xem chi tiết
nhóm54
Xem chi tiết
Lê Anh
Xem chi tiết
Xuân Trà
Xem chi tiết