cho a,b,c là các số thục không âm . CMR :
\(a\sqrt{4a^2+5bc}+b\sqrt{4b^2+5ca}+c\sqrt{4c^2+5ab}\ge\left(a+b+c\right)^2\)
Với a,b,c là các số không âm, chứng minh rằng \(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Với a;b là các số không âm. cmr \(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
#Chuyên mục: Giải trí cùng BĐT
1/ Chứng minh BĐT sau với a, b, c không âm.
\(a^3+b^3+c^3+3abc\ge ab\sqrt{2\left(a^2+b^2\right)}+bc\sqrt{2\left(b^2+c^2\right)}+ca\sqrt{2\left(c^2+a^2\right)}\)
Tuần sau sẽ là hai bài và bài khó hơn tuần này nha mọi người! Do hôm nay bắt đầu tập trung vô lớp để ổn định chuẩn bị cho năm học mới nên mình khá bận.
cho a,b,c dương và a+b+c=1.CMR: \(\frac{\sqrt{\left(^{a^2+2ab}\right)}}{\sqrt{\left(b^2+2c^2\right)}}+\frac{\sqrt{\left(^{b^2+2bc}\right)}}{\sqrt{\left(c^2+2a^2\right)}}+\frac{\sqrt{\left(^{c^2+2ac}\right)}}{\sqrt{\left(a^2+2b^2\right)}}\ge\frac{1}{a^2+b^2+c^2}\)
Không dùng AM-GM, hãy chứng minh:\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) với a, b, c >0
SS là một cách. Cách khác:
Áp dụng bổ đề (Link: https://artofproblemsolving.com/community/c1101515h2076318_lemma_by_vo_quoc_ba_can) với \(x=\sqrt{\frac{a}{b}};y=\sqrt{\frac{b}{c}};z=\sqrt{\frac{c}{a}}\) , có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{3}{2}\left[\Sigma\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\right]-6\)
Sau đó chứng minh: \(\frac{3}{2}\left[\Sigma\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\right]-6\ge3\)
Hoán vị thành đối xứng. SOS nhẹ nhàng.
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!