https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
Từ 200 số tự nhiên 1;2;3;4;5;.....;200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k
Cho 15 số tự nhiên phân biệt, khác 0, không lớn hơn 28. Chứng minh rằng trong 15 số đó luôn tìm được ít nhất một bộ 3 số mà số này bằng tổng của hai số còn lại hoặc 1 cặp 2, số mà số này gấp đôi số kia.
Nguyên lí Dirichlet ( ko đc bảo mk vào câu hỏi tương tự nha :))
1- Cho tập A= { 1; 2;....; 2017 }
a. Có thể lấy nhiều nhất bao nhiêu phần tử của A sao cho hiệu hai số bất kỳ khác 4.
b. Có thể lấy nhiều nhất bao nhiêu phần tử của A sao cho hiệu hai số bất kỳ không chia hết cho 5.
2- Cho tập B= { 1;2;3;...;100 }
a. Lấy 51 số bất kỳ trong tập A, chứng minh rằng luôn tồn tại hai số mà số này là bội của số kia.
b. Có thể lấy nhiều nhất bao nhiêu số từ A để xếp lên một đường tròn sao cho tích của hai số cạnh nhau nhỏ hơn 100.
Bài toán 1. Chứng mình rằng:
a) Trong 2012 số tự nhiên bất kì luôn tìm được hai số chia cho 2011 có cùng số dư
(hay hiệu của chúng chia hết cho 2011).
b) Trong 2012 sô tự nhiên bất kì luôn tìm được một số chia hết cho 2012 hoặc luôn
tìm được hai số chia cho 2012 có cùng số dư.
Giúp mk vs, mk đang caand gấp
Chứng minh rằng trong 20 số tự nhiên liên tiếp bất kì ta luôn tìm được 1 số mà tổng các chữ số chia hết cho 10
Từ 200 số tự nhiên 1;2;3;...;200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm đc 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
help me!!! mk tick cho ai nhanh mà đúng nha, mơn các bn nha!
1.cho 53 số nguyên tố khác nhau. chứng minh rằng luôn tìm được hai số mà hiệu của hai số này chia hết cho 210
cho 2015 số nguyên bất kì dương nhỏ hơn 2015.Tổng của 2015 số ấy là 4030,chứng minh rằng trong 2015 số nguyên dương ấy ta luôn chọn được 2 số mà tổng của chúng chia hết cho 2015
chứng minh rằng trong n số nguyên bất kì bao giờ cũng chọn được 1 hoặc 1 vài số mà tổng của các số vừa chọn chia hết cho n