Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng minh rằng trong hình thoi: Hai đường chéo là hai trục đối xứng của hình thoi.

Cao Minh Tâm
30 tháng 12 2017 lúc 9:37

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Ta có: AC ⊥ BD (tính chất hình thoi)

OB = OD (tính chất hình thoi)

Nên AC là đường trung trực của BD.

Do đó điểm đối xứng với điểm B qua AC là D;

Điểm đối xứng với điểm D qua AC là B

Điểm đối xứng với điểm A qua AC là điểm A;

Điểm đối xứng với điểm C qua AC là điểm C

Vậy điểm đối xứng với mỗi đỉnh của hình thoi qua AC cũng thuộc hình thoi

Do đó AC là trục đối xứng của hình thoi ABCD.

* Ta có : OC = OA và AC ⊥ BD (tính chất hình thoi)

Nên BD là đường trung trực của AC

Do đó điểm đối xứng với điểm A qua BD là điểm C

Điểm đối xứng với điểm C qua BD là điểm A

Điểm đối xứng với điểm B qua BD là điểm B

Điểm đối xứng với điểm D qua BD là điểm D

Vậy điểm đối xứng với mỗi đỉnh của hình thoi qua BD cũng thuộc hình thoi.

Do đó BD là trục đối xứng của hình thoi ABCD.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
the
Xem chi tiết
Khải Nhi
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Minato Namikaze
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Văn Trọng Hiệp
Xem chi tiết
tth_new
Xem chi tiết
Trần Lê Huy
Xem chi tiết