Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn xuân lộc

CHỨNG MINH RẰNG TỔNG CỦA N SỐ LẺ ĐẦU TIÊN LÀ SỐ CHÍNH PHƯƠNG

Hoàng Lê Bảo Ngọc
12 tháng 6 2016 lúc 9:11

Chứng minh như sau : 

Gọi \(S_{2n+1}\)là tổng của n số lẻ đầu tiên.

Trước tiên ta sẽ đưa tổng sau về dạng tổng quát : \(T_n=1+2+3+...+n\)(Tổng của n số tự nhiên đầu tiên)

Làm như sau : \(T=1+2+3+...+n\)(1)

Viết lại : \(T=n+\left(n-1\right)+\left(n-2\right)+...+3+2+1\)(2)

Cộng (1) và (2) theo vế được : \(2T=\left(n+1\right)+\left(n-1+2\right)+\left(n-2+3\right)+...+\left(3+n-2\right)+\left(2+n-1\right)+\left(1+n\right)\)

\(=\left(n+1\right)+\left(n+1\right)+\left(n+1\right)+...+\left(n+1\right)+\left(n+1\right)+\left(n+1\right)\)( Có tất cả n số hạng (n+1))

\(=n\left(n+1\right)\)\(\Rightarrow T=\frac{n\left(n+1\right)}{2}\)

Ta có : \(S_{2n+1}=1+3+5+...+\left(2n+1\right)=\left(2.0+1\right)+\left(2.1+1\right)+\left(2.2+1\right)+...+\left(2.n+1\right)\)

\(=2.\left(1+2+3+...+n\right)+n+1\)

\(=2.\frac{n\left(n+1\right)}{2}+\left(n+1\right)=n\left(n+1\right)+\left(n+1\right)=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Vậy \(S_{2n+1}\)là só chính phương.


Các câu hỏi tương tự
Lâm Hoàng Hải
Xem chi tiết
Le Thi Hong Van
Xem chi tiết
bùi thị bích ngọc
Xem chi tiết
Hằng Lê Thị
Xem chi tiết
Nguyễn Hải Phong
Xem chi tiết
Trúc Bảo
Xem chi tiết
Thạch Phạm Văn
Xem chi tiết
Vũ Thanh Tùng
Xem chi tiết
Phạm Thị Thu Ngân
Xem chi tiết