Gọi 2 số nguyên đó là a ; b
Xét hiệu a3 + b3 - (a + b)
= a3 - a + (b3 - b)
= a(a2 - 1) + b(b2 - 1)
= (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6 ( tổng 2 tích 3 số nguyên liên tiếp)
=> Tổng của hai số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập phương của chúng chia hết cho 6 (Đpcm)
Gọi hai số tự nhiên đó là a và b (a,b \(\in\)N) thì :
a3 \(\equiv\)a (mod 6)
b3 \(\equiv\)b (mod 6)
\(\Rightarrow\)a + b \(⋮\)6 \(\Leftrightarrow\)a3 + b3 \(⋮\)6 (đpcm)
Gọi 2 số tự nhiên lần lượt là a ; b
Gọi 2 số lập phương của chúng là a^3 ; b^3
Theo bài ra ta có : \(a+b⋮6\)
CM : \(a^3+b^3⋮6\)
Giải
CM : a^3 - a \(⋮\)6
\(\Leftrightarrow a^3+b^3-a-b=\left(a^3-a\right)+\left(b^3-b\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)
vì \(a\left(a-1\right)\left(a+1\right)\)là 3 số tự nhiên liên tiếp chia hết cho 3 ( xếp đúng thứ tự nhé, mình lười _-_ )
mà \(\left(a-1\right)a\)là 2 số tự nhiên liên tiếp chia hết cho 2
mà ƯCLN ( 2 ; 3 ) = 1 Vậy ta có đpcm