Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
chứng minh rằng tồn tai một số tự nhiên có tận cùng là 2022 và chia hết cho 2021
giúp minh với
Chứng minh rằng tồn tại số có dạng 20192019...201900...0 chia hết cho 2018
chứng minh rằng tồn tại số có dạng 19941994...199400...0 chia hết cho 1995.
Chứng minh rằng tồn tại một số có dạng 20232023...202300...0 chia hết cho 2024
Có hay không?
a)Tồn tại số tự nhiên x<17 sao cho 25x-1 chia hết cho 17
b)Tồn tại số có dạng 19941994...1994 gồm k số 1994 với k thuộc N và 1<k<1994 chia hết cho 1993
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng :
a/ với mọi n thuộc N ta có : ( n + 3 ).( n + 13 ).( n + 14 ) chia hết cho 6
b/ với mọi n thuộc N* ta có : A = 34n + 1 + 24n + 1 chia hết cho 5
c/ với mọi n thuộc N* ta có : 56n + 777...777 chia hết cho 63 ( 777...777 có n chữ số 7 )
m.n giúp mk bài này nha! Thanks m.n
Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại số tự nhiên n gồm không quá p chữ số 1 (n không có chữ số nào khác 1) và n chia hết cho p.
Chứng minh rằng tồn tại số có dạng 3232..........32 chia hết cho 31
Giúp mình với