Đặt: \(P=\sqrt[3]{18-5\sqrt{13}}+\sqrt[3]{18+5\sqrt{13}}\)
=> \(P^3=18-5\sqrt{13}+18+5\sqrt{13}+3\left(\sqrt[3]{18-5\sqrt{13}}\right)^2.\sqrt[3]{18+5\sqrt{13}}\)\(+3\sqrt[3]{18-5\sqrt{13}}.\left(\sqrt[3]{18+5\sqrt{13}}\right)^2\)
=> \(P^3=36+3\sqrt[3]{18-5\sqrt{13}}.\sqrt[3]{18+5\sqrt{13}}\left(\sqrt[3]{18-5\sqrt{13}}+\sqrt[3]{18+5\sqrt{13}}\right)\)
<=> \(P^3=36+3\sqrt[3]{18^2-25.13}\left(\sqrt[3]{18-5\sqrt{13}}+\sqrt[3]{18+5\sqrt{13}}\right)\)
=> P3=36-3.P
<=> P3+3P-36=0
<=> P3-27 + 3P-9=0
<=> (P-3)(P2+3P+9)+3(P-3)=0
<=> (P-3)(P2+3P+12)=0
=> P-3=0 (Do P2+3P+12 > 0 với mọi P)
=> P=3
Vậy \(P=\sqrt[3]{18-5\sqrt{13}}+\sqrt[3]{18+5\sqrt{13}}\)= 3 Là 1 số nguyên
Cách khác:
Đặt: \(Q=\sqrt[3]{18-5\sqrt{13}}+\sqrt[3]{18+5\sqrt{13}}\)
\(2Q=\sqrt[3]{144-40\sqrt{13}}+\sqrt[3]{144+40\sqrt{13}}\)
\(=\sqrt[3]{27-27\sqrt{13}+117-13\sqrt{13}}+\sqrt[3]{27+27\sqrt{13}+117+13\sqrt{13}}\)
\(=\sqrt[3]{\left(3-\sqrt{13}\right)^3}+\sqrt[3]{\left(3+\sqrt{13}\right)^3}\)
\(=3-\sqrt{13}+3+\sqrt{13}=6\)
\(\Rightarrow Q=3\)