Do p là số nguyên tố nên p là số tự nhiên.
Xét p = 3k + 1=> p2 + 8 = ( 3k + 1 )2 + 8 = 9k2 + 6k + 9 \(⋮\) 3 ( là hợp số )
Xét p = 3k + 2 => p2 + 8 = ( 3k + 2 )2 + 8 = 9k2 + 12k + 12 \(⋮\) 3 ( là hợp số )
Xét p = 3k => k = 1 do p là số nguyên tố => p2 + 8 = 9 + 8 = 17 ( thỏa mãn )
Ta có : p2 + 2 = 11. Mà 11 là số nguyên tố => Điều cần chứng minh
Bài này cũng giống như bài tìm p nguyên tố sao cho p2+8 là số nguyên tố thôi
Cách làm cũng giống luôn
Xét p=2
... loại
Xétp=3
... thỏa mãn
Xét p> 3 thì dùng đồng dư
Ta có: \(p\equiv\pm1\left(mod3\right)\)
\(\Rightarrow p^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2+8\equiv9\left(mod3\right)\)
\(\Rightarrow p^2+8⋮3\)
Mà \(p^2+8>3\)
Nên là hợp số ( loại)
+, p=2 thì ko t/m
+, p = 3 => p^2+8 = 17 nguyên tố
=> p^2+2 = 3^2+2 = 11 nguyên tố
+, p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+8 chia hết cho 3
Mà p^2+8 > 3 => p^2+8 là hợp số
Vậy ............
Tk mk nha