Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thành Công

Chứng minh rằng n(n+1)(2n+1)(3n+1)(4n+1) chia hết cho 5 với mọi số tự nhiên n

Pham Thi Ngoc Minh
14 tháng 2 2018 lúc 14:33

- Vì n là số tự nhiên nên n = 5k hoặc n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4 .( k thuộc N )

+) Với n = 5k thì n chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 1 thì 4n + 1 = 4 x ( 5k + 1 ) + 1 = 20k + 4 + 1 = 20k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 2 thì 2n + 1 = 2 x ( 5k + 2 ) + 1 = 10k + 4 + 1 = 10k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 3 thì 3n + 1 = 3 x ( 5k + 3 ) + 1 = 15k + 9 + 1 = 15k + 10 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Vậy với mọi số tự nhiên n thì n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Nguyễn Tiến Đạt
12 tháng 1 2021 lúc 21:38

Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. TH 2: n chia cho 5 dư 1 thì n = 5k +1 Þ 4n +1= 20k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH3: n chia cho 5 dư 2 thì n = 5k +2 Þ 2n +1= 10k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH4: n chia cho 5 dư 3 thì n = 5k +3 Þ 3n +1= 15k + 10 chia hết cho 5 Þ tích chia hết cho 5. TH 5: n chia cho 5 dư 4 thì n = 5k +4 Þ n +1= 5k + 5 chia hết cho 5 Þ tích chia hết cho 5. Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.

Khách vãng lai đã xóa
Pháp Nguyễn Văn
29 tháng 4 2021 lúc 7:49

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Minh Thư
Xem chi tiết
Yumani Jeng
Xem chi tiết
Duc Hay
Xem chi tiết
Nguyễn Ngọc Diệp
Xem chi tiết
pham dung
Xem chi tiết
Vũ Minh Khang
Xem chi tiết
Trần Thị Hoàng My
Xem chi tiết
Trần Thị Hoàng My
Xem chi tiết
Nguyễn Kim Thành
Xem chi tiết