n.(n + 1).(2n + 1)
= n.(n + 1).(2n - 2 + 3)
= n.(n + 1).2.(n - 1) + 3n.(n + 1)
Có: n.(n + 1).(n - 1) là tích 3 số nguyên liên tiếp
=> n.(n + 1).(n - 1) chia hết cho 3
=> 2n.(n + 1).(n - 1) chia hết cho 3
Lại có: 3n.(n + 1) chia hết cho 3
=> ...
n(n+1)(2n+1)= n(n+1)(2n-2+3)
= n(n+1)2(n-1)+3
= 2n(n+1)(n-1)+3
Mà n(n+1)(n-1) = 3n
=>2n(n+1)(n-1)+3= 3n+3
Vậy 3n+3 chia hết cho 3