Chứng minh rằng nếu a và b là hai số nguyên tố lớn hơn 3 thì a2 _ b2 chia hết cho 24
Chứng minh rằng nếu P và P+2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
chứng minh rằng nếu p là 1 số nguyên tố lớn hơn 3 thì (p-1)(p_1) chia hết cho 24
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
1) Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
2) Tìm giá trị của m để phương trình \(\frac{m}{x-1}+\frac{5x}{x+1}=5\) (ẩn x) có nghiệm lớn hơn hoặc bằng 3
3) Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{198^2}+\frac{1}{200^2}< \frac{1}{2}\)
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p2 - 1 chia hết cho 24.
Chứng minh rằng với k là số nguyên dương và a là số nguyên tố lớn hơn 5 thì\(a^{4k}\text{ }\)chia hết cho 240
Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng a^2-1 chia hết cho 24
chứng minh rằng với k là số nguên dương và a nguyên tố lớn hơn 5 thì \(a^{4k}\)chia hết cho 240