A = n3 + 3n2 - n - 3
A = n2 . (n + 3) - (n + 3)
A = (n + 3) . (n2 - 1)
A = (n + 3) . (n - 1) . (n + 1)
Vì n lẻ nên n + 1 và n + 3 là 2 số chẵn liên tiếp => (n + 1) . (n + 3) chia hết cho 8
=> A chia hết cho 8
A = n3 + 3n2 - n - 3
A = n2 . (n + 3) - (n + 3)
A = (n + 3) . (n2 - 1)
A = (n + 3) . (n - 1) . (n + 1)
Vì n lẻ nên n + 1 và n + 3 là 2 số chẵn liên tiếp => (n + 1) . (n + 3) chia hết cho 8
=> A chia hết cho 8
chứng minh rằng : A=n3+3n2-n-3 chia hết cho 8 Vn thuộc N. n lẻ
Chứng minh rằng : với n lẻ thì n = 2k + 1 ( k thuộc Z )
a ) n2 + 4n + 3 chia hết cho 8
b ) n3 + 3n2 - n - 3 chia hết cho 48
Chứng minh rằng
a, (n + 3)^2 - (n - 1)^2 chia hết cho 8
b, n^3 +3n^2 - 3 - n chia hết cho 48 ( n lẻ )
chứng minh rằng nếu n là số nguyên lẻ thì A= n3-3n2-n+21 chia hết cho 6
Chứng minh rằng : với n lẻ thì n = 2k + 1 ( k thuộc Z )
n3 + 3n2 - n - 3 chia hết cho 48
Chứng minh rằng A thuộc Z thì
a, ( n + 6)^2 - ( n - 6)^2 chia hết 24
b, n^3 + 3n^2 - n - 3 chia hết 48 ( với n số lẻ)
Giải chi tiết giùm mình nha
Chứng minh với mọi n thuộc Z thì :
n^5 - n chia hết cho 5
n^7 - n chia hết cho 7
n^3 - 3n^2 - n + 3 chia hết cho 48 ( n lẻ )
Chứng minh rằng với mọi số tự nhiên lẻ n:
a. n2 + 4n + 8 chia hết cho 8
b. n3 + 3n2 – n – 3 chia hết cho 4827
Chứng minh A thuộc Z thì
a, ( n + 6)^2 - ( n - 6)^2 chia hết cho 24
b, n^3 + 3n^2 - n - 3 chia hết 48 ( với n số lẻ)
giải chi tiết giùm mình nha