Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\) =>\(\hept{\begin{cases}a=bk\\b=ck\end{cases}}\) Do đó: \(\frac{a}{c}=\frac{bk}{c}=\frac{ck.c}{c}=k^2\) (1) \(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2k^2+b^2}{c^2k^2+c^2}=\frac{b^2.\left(k^2+1\right)}{c^2.\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=\frac{c^2k^2}{c^2}=k^2\) (2) Từ (1) và (2) suy ra: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)