Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{a+d}\)
=>(a+b)(a+d)=(c+b)(c+d)
=>\(a^2+ad+ba+bd=c^2+cd+bc+bd\)
=>\(a^2-c^2+ad-cd+ab-bc=0\)
=>(a-c)(a+c)+d(a-c)+b(a-c)=0
=>(a-c)(a+c+d+b)=0
=>\(\left[\begin{array}{l}a-c=0\\ a+b+c+d=0\end{array}\right.\Rightarrow\left[\begin{array}{l}a=c\\ a+b+c+d=0\end{array}\right.\)