\(\sum\sqrt{a^2+1}=\sum\sqrt{a^2+ab+bc+ca}=\sum\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{a+b+a+c+b+c+b+a+c+a+c+b}{2}=2\left(a+b+c\right)\)
\(\sum\sqrt{a^2+1}=\sum\sqrt{a^2+ab+bc+ca}=\sum\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{a+b+a+c+b+c+b+a+c+a+c+b}{2}=2\left(a+b+c\right)\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho 3 số thực dương a,b,c thoả mãn điều kiện:
\(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng:
\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Cho a, b , c dương thỏa mãn a + b + c = abc. Tìm Max
\(S=\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ca\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Biết a;b;c là 3 số thực thỏa mãn điều kiện :a=b+1=c+2;c>0
Chứng minh : \(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
cho a,b,c là các số thực dương thỏa ab+bc+ca=1.cmr
\(\left(1-a^2\right)\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+\left(1-b^2\right)\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=2c\left(1+ab\right)\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=abc. Chứng minh rằng \(\frac{\sqrt{1+a^2}}{a}+\frac{\sqrt{1+b^2}}{b}-\sqrt{1+c^2}< 1\)
Chứng minh rằng: \(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\) biết a; b; c là 3 số thực thoả mãn điều kiện a=b+1=c+2 ; c > 0
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
\(Q=\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)