\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng bđt Co-si cho 3 số
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)
Nhân 2 vế vào sẽ đc dpcm
Dấu "=" khi a = b = c
Anh Incursion:Em có cách khác!Anh check giúp ạ.
Chuẩn hóa a + b + c = 3.Thì BĐT trở thành:
\(\frac{a}{3-a}+\frac{b}{3-b}+\frac{c}{3-c}\ge\frac{3}{2}\)
Ta sẽ c/m: \(\frac{a}{3-a}\ge\frac{3}{4}\left(a-1\right)+\frac{1}{2}\).
Thật vậy,xét hiệu hai vế: \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\).Do a + b + c = 3 và a,b,c > 0 hiển nhiên ta có: a< 3 tức là 3 - a > 0
Suy ra \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\ge0\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm.
Dấu "=" xảy ra khi a = b = c
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}b+ca+c+ab+a+bc≥23
\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}⇔b+ca+b+c−1+c+aa+b+c−1+a+ba+b+c−1≥23
\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}⇔(a+b+c)(a+b1+b+c1+c+a1)≥29
\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9⇔[(a+b)+(b+c)+(c+a)](a+b1+b+c1+c+a1)≥9
Áp dụng bđt Co-si cho 3 số
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)
Nhân 2 vế vào sẽ đc dpcm
Dấu "=" khi a = b = c