Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Bích Ngọc

chứng minh rằng n( n+1)(n+2)(n+3) chia hết cho 24

với n là số chẵn ta có : n = 2k

=> n.(n+1)(n+2)(n+3) = 2k( 2k+ 1)(2k+2)(2k+3) = 2.2.k.(2k+1).(k+1).(k+3)

vì k và k+ 1 là hai số tự nhiên liên tiếp nên k.(k+1) \(⋮\) 2 

=> 2.2.k.(k+1).(2k+1).(k+3) ⋮ 8 ⇒ n.(n+1)(n+2)(n+3) ⋮ 8 (1) 

mặt khác n; n + 1; n + 2 là 3 số tự nhiên liến tiếp nên 

 \(\Rightarrow\) n(n+1)(n+2)(n+3) ⋮ 3 

   Vì (3; 8) = 1  (2) 

Nên kết hợp (1) và (2) ta có n.(n+1)(n+2)(n+3) ⋮ 24  (*)

Với n là số lẻ ta có n = 2k + 1 

    n(n+1)(n+2)(n+3)

= (2k+1)(2k+ 2)(2k+3)(2k+4)

= 2.2.(2k+1)(k+1)(2k+3)(k+2) vì k + 1 và k + 2 là hai số tự nhiên liên tiếp nên (k+1)(k+2) ⋮ 2 ⇒ 2.2.(2k+1)(k+1)(2k+3)(k+2) \(⋮\) 8

\(\Rightarrow\) n(n+1)(n+2)(n+3) ⋮ 8 (a)

vì n; n + 1; n+ 2 là ba số tự nhiên liên tiếp nên:  n(n+1)(n+2)(n+3) ⋮ 3 (b)

Mà (3; 8) = 1 nên kết hợp (a) và (b) ta có : n(n+1)(n+2)(n+3) ⋮ 24  (**)

Kết hợp (*) và (**) ta có n.(n+1)(n+2)(n+3) ⋮ 24 ∀ n ∈ N

 


Các câu hỏi tương tự
Sandy Thiên Băng
Xem chi tiết
Hồ việt hưng
Xem chi tiết
Huy Hoàng
Xem chi tiết
Bùi Như Lạc
Xem chi tiết
Nguyễn Công Biển
Xem chi tiết
Nguyễn Ngọc Diệp
Xem chi tiết
Trần Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Đoàn Nguyễn Bảo Ngọc
Xem chi tiết