\(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\Leftrightarrow\left|ab+cd\right|^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
Áp dụng bất đẳng thức bunhiacopxki ta suy ra:
Dấu "=" xảy ra <=> ad=bc
\(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\Leftrightarrow\left|ab+cd\right|^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
Áp dụng bất đẳng thức bunhiacopxki ta suy ra:
Dấu "=" xảy ra <=> ad=bc
a)Chứng minh \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\).Dấu = xảy ra khi nào?
b)Áp dụng tính giá trị lớn nhất và giá trị nhỏ nhất của sin a+cos a
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho c>0 và a,b≥c. Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Cho \(x\ge2;y\ge2.\)Chứng minh \(x\sqrt{2\left(y-2\right)}+y\sqrt{2\left(x-2\right)}\le xy\).Dấu bằng xảy ra khi nào ?
Chứng minh rằng với mọi số thực a, b, c ta có:
\(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\). Cho biết dấu bằng xảy ra khi nào
Cho 4 số thực a,b,c,d bất kỳ chứng minh rằng: \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
cho bốn số thực a,b,c,d thỏa mãn a2 + b2 +1 =2(a+b) và c2 + d2 + 36 = 12(c+d) chứng minh rằng
\(\left(\sqrt{2}-1\right)^6\le\left(a-c\right)^2+\left(b-d\right)^2\le\left(\sqrt{2}+1\right)^6\)
Cho các số thực dương a,b,c thỏa mãn abc =1 . Chứng minh rằng \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi nào ?
Cho a,b,c là cá số thực dương bất kì. Chứng minh rằng:
\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(c+1\right)}+\sqrt{c\left(a+1\right)}\le\frac{3\left(a+1\right)\left(b+1\right)\left(c+1\right)}{2}\)
AI HELP Ạ
Cho a,b,c là cá số thực dương bất kì. Chứng minh rằng:
\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(c+1\right)}+\sqrt{c\left(a+1\right)}\le\frac{3\left(a+1\right)\left(b+1\right)\left(c+1\right)}{2}\)
Cảm ơn ạ