Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Quang Thái

Chứng minh rằng không tồn tại các số tự nhiên a,b.c.d thỏa mãn adcb = 12345 và a mũ 2 = b mũ 2 + c mũ 2 + d mũ 2

 

meme
13 tháng 9 2023 lúc 14:11

Để chứng minh rằng không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2, ta có thể sử dụng phương pháp phản chứng (proof by contradiction). Giả sử rằng tồn tại các số tự nhiên a, b, c, d thỏa mãn hai điều kiện trên. Từ a^2 = b^2 + c^2 + d^2, ta có thể suy ra rằng a^2 là một số chẵn (vì tổng của các số bình phương là số chẵn). Do đó, a cũng phải là một số chẵn. Tuy nhiên, khi nhân các số a, b, c, d lại với nhau theo thứ tự adcb, ta có một số lẻ (12345). Điều này chỉ có thể xảy ra khi ít nhất một trong các số a, b, c, d là số lẻ. Nhưng theo giả thiết, a là số chẵn. Điều này dẫn đến mâu thuẫn với giả thiết ban đầu, khiến cho giả thiết không thể đúng. Vì vậy, không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2.


Các câu hỏi tương tự
Nguyễn Võ Khánh Linh
Xem chi tiết
Tạ Quý Mùi
Xem chi tiết
hoàng văn huy
Xem chi tiết
Anhnek
Xem chi tiết
Phương Anh Cute
Xem chi tiết
Nguyen Viet Ha
Xem chi tiết
Công chúa ori
Xem chi tiết
lê mai phương
Xem chi tiết
Tien nu tinh yeu
Xem chi tiết