\(\frac{2a^2+2b^2-a^2-b^2-2ab}{4}\ge0\)
\(\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{4}\ge0\)
\(\frac{2a^2+2b^2-a^2-b^2-2ab}{4}\ge0\)
\(\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{4}\ge0\)
Chứng minh bất đẳng thức: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\) với mọi a, b
với các số dương a,b,c chứng minh rằng
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}\ge\frac{2}{9}\left(a+b+c\right)\)
Cho a, b, c là các số thực dương,chứng minh rằng:
\(\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\ge\frac{3}{2}\)
Đăng làm cảnh ạ!:v Em đùa tí,để mọi người có thể ăn điểm :)) em tặng 9-18 điểm luôn! :D Với đk giải đầy đủ :v
Bài 2. Chứng minh rằng: Với a, b, c là các số dương ta luôn có:
a) \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
b) \(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Chứng minh rằng với mọi số thực a, b ta luôn có:
a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
Cho a,b,c thỏa mãn abc=1
Chứng minh rằng \(\left(\frac{a}{a^2b^2+a^2+1}\right)^2+\left(\frac{b}{b^2c^2+b^2+1}\right)^2+\left(\frac{c}{c^2a^2+c^2+1}\right)^2\ge\frac{1}{a^2+b^2+c^2}\)
1, Cho x.y=1; x > y. Chứng minh rằng:
\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
2, CMR : \(\left(a^{10}+b^{10}\right).\left(a^2+b^2\right)\ge\left(a^8+b^8\right).\left(a^4+b^4\right)\)với mọi a,b
Giúp mình nha
cho a,b,c thuộc R+ và abc=1. chứng minh rằng
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)