\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{a+1-a}{a.\left(a+1\right)}=\frac{1}{a.\left(a+1\right)}\frac{1}{a.a}=\frac{1}{a^2}\)
Từ hai bất đẳng thức trên suy ra \(\frac{1}{a}-\frac{1}{a+1}
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{a+1-a}{a.\left(a+1\right)}=\frac{1}{a.\left(a+1\right)}\frac{1}{a.a}=\frac{1}{a^2}\)
Từ hai bất đẳng thức trên suy ra \(\frac{1}{a}-\frac{1}{a+1}
a) A = 1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{100^2}\)
Chứng minh rằng A<2
b) B =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+................+\frac{1}{2012^2}\)
Chứng minh rằng \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
Bài 1:
a) A = 1 +\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\) . Chứng minh rằng A \(⋮\) 100.
b) A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\). Chứng minh rằng A > \(\frac{4}{3}\)
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1
Chứng minh rằng:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{63}\)
Chứng minh rằng: \(A< 6\)
1/ Cho \(A=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
Chứng minh rằng: \(A=\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\frac{ }{ }\right)\right]\)
2/ Tính \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\). Chứng minh \(A< 1\)
3/ Cho \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh: \(\frac{1}{2}< A< 1\)
GIÚP MÌNH NHA, MÌNH ĐANG CẦN GẤP.MÌNH SẼ TICK AI NHANH NHẤT!!
Cho A=\(\frac{1}{2}-\frac{1}{3}+ \frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)
Chứng minh rằng 0;2<A<2;5
cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\).chứng minh rằng A<3/4
1. A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)
Chứng minh rằng: \(\frac{1}{5}< A< \frac{2}{5}\)
cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) chứng minh rằng A<\(\frac{1}{2}\)