Cho b2 = ac ; c2 = bd . Chứng minh rằng :
\(\dfrac{a}{d}=\dfrac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\)
Cho \(b^2=ac\) ; \(c^2=bd\). Chứng minh rằng:
a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b) \(\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^2+8c^3+125d^3}\)
Chứng minh rằng:
\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)\(\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\)\(Cho\)\(b^2=ac,c^2=bd\)\(CMR\)
\(1)\)\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\) \(2)\)\(\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\)
Cho bốn số a, b, c, d khác 0 thỏa mãn b^2= ac, c^2= bd và a^3+ 27b^3+ 8c^3 khác 0. Chứng minh rằng a/d= \(\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
CHo a ,b,c,d Khác 0 thỏa mãn b mũ 2 =ac;c mũ 2 = bd. Chứng Minh rằng a mũ 3 +b mũ 3 +c mũ 3 /b mũ 3+c mũ 3+d mũ 3 =a/d
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho b^2=ac;c^2=bd với b;c;d khác 00 ; b+c khác d ; b^3+c^3 khác d^3
Chứng minh rằng
(a^3+b^3-c^3) / (b^3+c^3-d^3) = [(a+b-c)/(b+c-d)]^3
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)