Bài 3. (4 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O); C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I. a) Chứng minh rằng góc BAC = 900 b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Tứ giác ABDC là hình gì? Vì sao? c) Tính độ dài BC trong trường hợp OA = 7,2cm và O’A = 3,2cm d) Gọi giao điểm của OI và AB là M; giao điểm của O’I và AC là N.
A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN. Bài này có khó không, giải hộ mình với
A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN. Bài này có khó không, giải hộ mình với
Cho góc vuông xAy và đường tròn tâm O tiếp xúc với Ax, Ay lần lượt tại P và Q. Gọi d là một tiếp tuyến thay đổi của (O). Gọi a, p, q lần lượt là các khoảng cách từ A, P, Q đến đường thẳng d. Chứng minh rằng khi d thay đổi thì tỉ số a^2/pq không đổi.
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt (O) tại E (khác D). Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh DF là tiếp tuyến của (O).
Cho A nằm ngoài đường tròn tâm O, bán kính R, tiếp tuyến AB, AC (B, C là tiếp điểm)
Chứng minh: A,B,O,C cùng thuộc một đường tròn
Cho tâm giác ABCD nội tiếp đường tròn (O), I là trung điểm của BC, M là điểm trên đoạn CI (M≠C,I). Đường thẳng AM cắt đường tròn (O) tại D. Tiếp tuyến của đường tròn ngoại tiếp tâm giác AMI tại M cắt các đoạn thẳng BD, DC lần lượt tại P và Q. Chứng minh M là trung điểm PQ.
Giúp mình nhé!!!
cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC (B,C là tiếp tuyến).Kẻ đường thẳng BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a. Chứng minh OA vông góc với BC và DC song song OA b. Chứng minh AEDO là hình bình hànhc. Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh IK.IC+OI.IA=R^2