Ta có:
\(A=n\left(n+2\right)\left(n+4\right)\left(n+6\right)+16\)
\(=\left[n\left(n+6\right)\right]\left[\left(n+2\right)\left(n+4\right)\right]+16\)
\(=\left[n^2+6n\right]\left[n\left(n+4\right)+2\left(n+4\right)\right]+16\)
\(=\left[n^2+6n\right]\left[n^2+4n+2n+8\right]+16\)
\(=\left[n^2+6n\right]\left[n^2+6n+8\right]+16\)
Đặt \(n^2+6n=t\). Biểu thức A bằng:
\(t\left[t+8\right]+16\)
\(=t^2+8t+16\)
\(=\left(t^2+4t\right)+\left(4t+16\right)\)
\(=t\left(t+4\right)+4\left(t+4\right)\)
\(=\left(t+4\right)\left(t+4\right)\)
\(=\left(t+4\right)^2\) là số chính phương.