\(444\equiv3\left(mod7\right)\Leftrightarrow444^{555}\equiv3^{555}\left(mod7\right);555\equiv2\left(mod7\right)\Leftrightarrow555^{444}\equiv2^{444}\left(mod7\right)\)
\(\Leftrightarrow B\equiv3^{555}+2^{444}\)
Mà \(3^{555}+2^{444}=\left(3^5\right)^{111}+\left(2^4\right)^{111}⋮\left(3^5+2^4\right)=259⋮7\)
Do đó \(3^{555}+2^{444}\equiv0\equiv B\left(mod7\right)\)
Vậy \(B⋮7\)