Ta có: \(\frac{1}{2^2}<\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)
.....................
\(\frac{1}{50^2}<\frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
Ta có: \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<1\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<2\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}+\frac{1}{50.51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}<1<2\) (đpcm)
Ta có:
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A<1+1-\frac{1}{50}\)
\(A<1+\frac{49}{50}\)
\(A<\frac{99}{50}<2\)
\(A<2\)
=> điều cần chứng minh