Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tuấn Minh

Chứng minh rằng A=a5b-ab5=ab(a+b)(a-b)(a2+b2) và chứng minh A chia hết cho 30

Hà Thị Quỳnh
21 tháng 5 2016 lúc 11:37

Ta có \(A=a^5b-ab^5=a^5b-ab-ab^5+ab\) 

 \(A=\left(a^5b-ab\right)-\left(ab^5-ab\right)\)

\(A=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta có \(m^5-m=m\left(m^4-1\right)=m\left(m^2-1\right)\left(m^2+1\right)\)

\(=m\left(m+1\right)\left(m-1\right)\left(m^2-4+5\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m^2-4\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)-5\left(m-1\right)m\left(m+1\right)\)

Vì \(m-2;m-1;m;m+1;m+2\) là 5 số nguyên liên tiếp nên chia hết cho 2 ; 3 ; 5

Mà \(\left(2;3;5\right)=1\)

\(\Rightarrow\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)\) chia hết cho \(2\times3\times5=30\)

\(\Rightarrow m^5-m\) chia hết cho 30 

\(\Rightarrow a^5-a\) và \(b^5-b\) Chia hết cho 30

\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)\) chia hết cho 30 

\(\Rightarrow A=a^5b-ab^5\) chia hết cho 30 

Vậy A chia hết cho 30


Các câu hỏi tương tự
pureblood
Xem chi tiết
Mai Phương Uyên
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Huyền
Xem chi tiết
Lê Thị Hải Yến
Xem chi tiết
Nguyễn Hồng Nga
Xem chi tiết
Lê Hiếu Ngân
Xem chi tiết
DANG TRAN TRUC MAI
Xem chi tiết
Mong Ji
Xem chi tiết