Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Nguyễn Khánh Uyên

Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)

Thảo Nguyên Xanh
6 tháng 2 2017 lúc 20:10

Biến đổi vế trài ta có

a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)

=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3

=(a+b)(a+b)2+c3-3ab(a+B+c)

=......................

Bn cứ nhóm lại là = vế phải.

Mạc Thu Hà
10 tháng 3 2017 lúc 15:55

bạn thiếu dấu cộng giữa b2 và cvì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)

Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3  -3ab(a+b+c)

                                   =(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)

                                   =(a+b+c)((a+b+c)2-3(ac+bc)-3ab)

                                   =(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )

                                   =(a+b+c)(a2+b+c2-ab-bc-ac)=vp (đpcm)

Songoku Sky Fc11
5 tháng 8 2017 lúc 6:07
 

Có: a3+b3+c33abc

=a3+3a2b+3ab2+b3+c33a2b3ab23abc

=(a+b)3+c33ab(a+b+c)

=(a+b+c)(a2+2ab+b2(a+b)c+c2)3ab(a+b+c)

=(a+b+c)(a2+b2+c2+2abacbc3ab)

=(a+b+c)(a2+b2+c2abacbc)(đpcm)

   

Các câu hỏi tương tự
Khánh Ngọc
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Thúy Hiền Nguyễn
Xem chi tiết
hoaan
Xem chi tiết
Minh Anh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
N.T.M.D
Xem chi tiết
nub
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết