cho 1/a+1/b+1/c=0 với a,b,c khác 0 và M=b^2c^2/a+c^2a^2/b+a^2b^2/c. chứng minh M=3abc
giúp mình với. cám ơn nhiều
Cho 0 ≤a;b;c ≤2 và a-b;b-c;c-a khác 0. Chứng minh rằng: 1/(a-b)^2 + 1/(b-c)^2 +1/(c-a)^2 ≥9/4
Cho 2 số hữu tỉ a, b khác nhau và khác 0. Chứng minh rằng số \(A=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a-b\right)^2}}\) là số hữu tỷ
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
Cho hàm số y=x^2 có đò thị (P) và đường thẳng (d) đi qua điểm M(1;2)có hệ số k khác 0
a/ Chứng minh rằng với mọi giá trị của k khác 0 đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B
b/ Gọi Xa và Xb là hoành dộ hai diểm A và B. Chứng minh rằng Xa - Xb -Xa.Xb -2 =0
Cho M = \(\dfrac{a^2+b^2}{a+b}\) (a>0, b>0, a khác b). Giả sử a, b là các số dương phân biệt thỏa mãn a + b = 2. Chứng minh rằng M > 1.
cho a,b,c>0. a khác 0. chứng minh rằng \(a^2+b^2+\frac{1}{a^2}+\frac{b}{a}>=\sqrt{3}\)
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho a,b,c là các hằng số và a khác -1, b khác -1, c khác -1. Chứng minh rằng nếu x=b*y+c*z, y=a*x+c*z, z=a*x+b*y; x+y+z khác 0 thì 1/(1+a)+1/(1+b)+1/(1+c)=2
Mong các bạn giải giúp mình, mình đang cần gấp!!