`A=x^2 -x +1 = x^2 -2*x*1/2 +(1/2)^2 +1 -(1/2)^2`
`A=(x-1/2)^2 + 3/4 >0 AAx `
Vậy `A=x^2 -x +1 >0`
`B=x^2 +x+1 = x^2 +2*x*1/2 +(1/2)^2 +1 -(1/2)^2`
`B= (x+1/2)^2 +3/4 > 0 AAx`
Vậy `B=x^2 +x +1 >0`
`C=x^2 +2x+2 = x^2 +2*x*1 +1^2 +2-1^2`
`C=(x+1)^2 +1 >0`
Vậy `C=x^2 +2x+2>0`
a: \(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2+2x+1+1=\left(x+1\right)^2+1>0\)