\(3^{12}+3^{24}+3^{36}=3^{12}\left(1+3^{12}+3^{24}\right)\)
Xét mod 37.
312 = 531441 ≡ 10
324 = (312)2 ≡ 102 ≡ 26
=> 1 + 312 + 324 ≡ 1 + 10 + 26 = 37 ≡ 0
=> 312(1+312+324)⋮37
\(3^{12}+3^{24}+3^{36}=3^{12}\left(1+3^{12}+3^{24}\right)\)
Xét mod 37.
312 = 531441 ≡ 10
324 = (312)2 ≡ 102 ≡ 26
=> 1 + 312 + 324 ≡ 1 + 10 + 26 = 37 ≡ 0
=> 312(1+312+324)⋮37
đồng dư thức : chứng minh rằng
\(7^{2^{4n+1}}+4^{3^{4n+1}}-65\) chia hết cho 100 mọi người giúp mình với, thanks
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
chứng minh rằng 13^n+2 +14^2n+1 chia hết 183 ( c/m theo đồng dư thức)
chứng minh rằng: 64+324 chia hết cho 20 và 81
Giả sử 3 số tự nhiên \(\overline{abc}\), \(\overline{bca}\), \(\overline{cab}\) đều chia hết cho 37. Chứng minh rằng:
a3+b3+c3-3abc cũng chia hết cho 37.
bài 1 cho a và b là hai số tự nhiên .biết a chia cho 3 dư 1 ; b chia cho 3 dư 2 .chứng minh rằng ab chia cho 3 dư 2
bài 2 chứng minh rằng biểu thức n (2n-3) -2n (n+1) luôn chia hết cho 5 với mọi số nguyên n
đồng dư thức: chứng minh
220^119^69 +119^69^220 +69^ 220^19 chia hết cho 102
giúp mình với, cảm ơn mọi người
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19