Ta có :
\(2^{4n+1}+2=2^{4n}.2+2=\left(...6\right).2+2=\left(...2\right)+2=\left(...4\right)\)không chia hết cho 5 chứ ?
Ta có :
\(2^{4n+1}+2=2^{4n}.2+2=\left(...6\right).2+2=\left(...2\right)+2=\left(...4\right)\)không chia hết cho 5 chứ ?
chứng minh rằng 3^2n+3-24n+37 chia hết cho 64
Chứng minh rằng:
a) 4n +15n - 1 chia hết cho 9
b) 32n+3 - 24n + 37 chia hết cho 64
c) 2n+2 x 3n + 5n -4 chia hết cho 25
Chứng minh rằng:
a) 52n+1 + 2n+4 + 2n+1 chia hết cho 23
b) 11n+2 + 122n+1 chia hết cho 133
c) 22n+1 + 32n+1 chia hết cho 5
d) 22n+2 + 24n + 14 chia hết cho 18
a,Chứng minh A=13^n+2+14^2n+1 chia hết cho 183
b,Chứng minh P=2^2n+2+24n+14 chia hết cho 18
c,Cho A=(n+1)x(n+2)x...........x(n+n)
Chứng minh A chia hết cho 2^n với nEN*
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
Cho n thuộc N , chứng minh rằng 5n - 1 chia hết cho 4
Cho n thuộc N , chứng minh rằng n2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
1)Chứng minh rằng Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5 còn tổng 6 số liên tiếp không chia hết cho 6
2)Cho (16.a+17.b)chia hết cho11 Chứng minh rằng (17.a+16.b)chia hết cho11
Cho n thuộc N, chứng minh rằng n^2 + n + 1 không chia hết cho 4 và không chia hết cho 5.
Cho n thuộc N. Chứng minh rằng n2+n+1 không chia hết cho 2 và không chia hết cho 5