Chứng minh rằng:
1+ \(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{3}}\)+ ...... + \(\frac{1}{\sqrt{2025}}\) > 45
nhanh nhé giải cả cách làm nhé
SO SÁNH 45 VỚI S
\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
So sánh 45 với S, biết:
S= \(\frac{1}{\sqrt{1}}\)+ \(\frac{1}{\sqrt{2}-\sqrt{1}}\)+ \(\frac{1}{\sqrt{3}-\sqrt{2}}\)+ \(\frac{1}{\sqrt{4}-\sqrt{3}}\)+....+ \(\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
Chứng minh rằng :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Chứng minh rằng:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)
Chứng minh rằng ; \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+........+\frac{1}{\sqrt{100}}>10\)
Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Chứng minh rằng : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)