Lời giải:
Nếu $n$ chẵn:
$17^n+2\equiv (-1)^n+2\equiv 1+2\equiv 3\equiv 0\pmod 3$
$\Rightarrow 17^n+2\vdots 3$
$\Rightarrow (17^n+2)(17^n+1)\vdots 3$
Nếu $n$ lẻ:
$17^n+1\equiv (-1)^n+1\equiv (-1)+1\equiv 0\pmod 3$
$\Rightarrow 17^n+1\vdots 3$
$\Rightarrow (17^n+2)(17^n+1)\vdots 3$
Từ 2 TH trên suy ra $(17^n+2)(17^n+1)$ luôn chia hết cho $3$ với mọi $n\in\mathbb{N}$