ta có:
\(\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{\left(2n\right)^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+...+\frac{1}{2^2.n^2}\)
\(=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+..+\frac{1}{2^2}.\frac{1}{n^2}=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)=\frac{1}{4}.\left(\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}\right)\)
mà 1/2^2+1/3^2+..+1/n^2 < 1(cái này bn tự c/nm đc chứ?)
=>\(\frac{1}{4}.\left(\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}\right)<\frac{1}{4}\left(đpcm\right)\)
very sorry mik mới lớp 5 à nếu biết mik sẽ giải giùm bạn ! ^_^