Bất đẳng thức trên không đúng. Bạn có thể kiểm tra với a = b = -1.
\(\left(a^3+b^3\right)\left(a^2+b^2\right)\ge a^5+b^5\)
\(\Leftrightarrow a^5+b^5+a^2b^3+a^3b^2\ge a^5+b^5\)
\(\Leftrightarrow a^2b^2\left(a+b\right)\ge0\) đúng
\(\Rightarrow\) đpcm
Bất đẳng thức trên không đúng. Bạn có thể kiểm tra với a = b = -1.
\(\left(a^3+b^3\right)\left(a^2+b^2\right)\ge a^5+b^5\)
\(\Leftrightarrow a^5+b^5+a^2b^3+a^3b^2\ge a^5+b^5\)
\(\Leftrightarrow a^2b^2\left(a+b\right)\ge0\) đúng
\(\Rightarrow\) đpcm
Cho 3 số dương a, b, c. Chứng minh:
\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3\left(\dfrac{a^2+b^2+c^2}{a+b+c}\right)\)
Sử dụng phương pháp biến dổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^2b^2+b^2c^2+c^2a^2}\)
Sử dụng phương pháp biến đổi tương đương
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Bài 3. Cho \(a,b,c\in R\). Chứng minh các bất đẳng thức sau:
\(a,\frac{a^2+3}{\sqrt{a^2+2}}>2\)
\(b,\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) \(\left(ab>0\right)\)
\(c,\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
Cho 3 số dương a, b, c. Chứng minh:
\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3\left(\dfrac{a^2+b^2+c^2}{a+b+c}\right)\)
Gợi ý: Nhân chéo a + b + c sang trái rồi chuyển vế sang phải, biến đổi thành tổng ko âm.
Sử dụng phương pháp biến đổi tương đương.
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dụng phương pháp biến đổi tương đương
CM BDT
\(a^3+b^3+c^3\ge3abc\) voi a,b,c>0
va
\(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) voi ab >0
\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
Chứng minh BĐT trên