\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì (x+1/2)^2 \(\ge\)0 nên (x+1/2)^2 +3/4 >0
hk tốt
tk đi
\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì (x+1/2)^2 \(\ge\)0 nên (x+1/2)^2 +3/4 >0
hk tốt
tk đi
Chứng minh mệnh đề sau: \(\forall x\in R\)thì \(x^2+x+1>0\)
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\forall x\in R\), \(x^2-x+1>0\)
b) \(\exists n\in N\), (n +2) (n+1 ) = 0
c) \(\exists x\in Q\), \(x^2=3\)
d) \(\forall n\in N\), \(2^n\ge n+2\)
Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích? Phát biểu các mệnh đề đó thành lời
a) \(\exists x\in R\), 5x - \(3x^2\) \(\le1\)
b) \(\exists x\in R\), \(x^2+2x+5\) là hợp số
c) \(\forall n\in N\), \(n^2+1\) không chia hết cho 3
d) \(\forall n\in N^{sao}\), n ( n + 1 ) là số lẻ
e) \(\forall n\in N^{sao}\), n ( n + 1) ( n + 2 ) chia hết cho 6
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\), x > 1 => \(\dfrac{2x}{x+1}< 1\)
b) \(\forall x\in R\), x >1 = > \(\dfrac{2x}{x+1}>1\)
c) \(\forall x\in N\), \(x^2\) chia hết cho 6 = > x chia hết cho 6
d) \(\forall x\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\exists x\in Q\), \(4x^2-1=0\)
b) \(\exists n\in N\), \(n^2+1\) chia hết cho 4
c) \(\exists x\in R\), \(\left(x-1\right)^2\ne x-1\)
d) \(\forall n\in N\), \(n^2>n\)
e) \(\exists n\in N\), n(n+!) là một số chính phương
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\)
, \(x^2\) chia hết cho 6 => x chia hết cho 6
d) \(\forall\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
Trong các mệnh đề sau, mệnh đề nào đúng?
A. \(\exists\in Q:9x^2-1=0\) B. \(\forall x\in R:x^2+2x+1>0\)
C. \(\forall n\in N:n^2>n\) D. \(\exists n\in Z:n^2-3n-5=0\)
\(\forall x\in R,\frac{x^2-1}{x-1}=x+1\)
Xác định xem mênhj đề sau đúng hay sai ( giải thích), phát biểu phủ định của mệnh đề
Nêu mệnh đề phủ định của mệnh đề: " \(\forall x\in Q\), \(3x^2-10x+3=0\) "